
Logistic Regression with Incomplete Choice-Based
Samples

MICHAEL FUGATE ACHLA MARATHE CLINT SCOVEL

Abstract
We have tested the Steinberg and Cardell estimator for incomplete choice-based samples where

the independent covariates are generated by a non-uniform density and compared it with a bench-
mark procedure. We find that this estimator provides substantial improvement over the benchmark
when evaluated with respect to misclassification error.
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1 Introduction

In fraud detection efforts at Los Alamos National Laboratory, it is common to have data consisting
of examples of fraud, but no examples of non-fraud. In our experience with the healthcare claims
data and the IRS’s (Internal Revenue Service) tax return data, it is often the case that small set
of training data on abusive providers and fraudulent tax returns is available but no illustrations of
good providers or good tax returns are available. In the health care arena where billions of dollars
are being lost to fraudulent providers, a small increase in precision in modeling can save the tax
payers millions of dollars.

The health care data contains providers in tens of thousands whereas only a small number (a
few hundred) have labels of fraud, the rest of the providers have no labels at all. The labels on
providers are binary i.e. either a provider belongs to the fraudulent set in which case he gets a
value or he belongs to the unknown set of providers. Each of these providers have a number
of covariates associated with them. Covariates can take the form of ratios, averages, entropy,
chi-square goodness of fit statistic etc.

One way to develop a predictor is to assume that the fraud sample is a random sample of the
fraud population. A similar sized random sample can be taken from the complement of the fraud
sample and which can be labeled as non-fraud. The resulting sample gives a training set that
can be used to determine a predictor which we will call the predictor. No attempts have been
made to determine its asymptotic bias. However, empirical evaluations demonstrate it has enough
predictive capability to make it useful.

Traditional sampling schemes for logistic regression are prospective sampling (also called ex-
ogenous sampling), and retrospective sampling (also called choice-based sampling). For rare

1Los Alamos National Laboratory P.O. Box 1663, MS B265, Los Alamos NM 87545. Email:
fugate,achla,jcs @c3.lanl.gov.
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events or costly samples, retrospective sampling has many advantages and work has been done
to construct estimators for such data. See Manski and Lerman [8] for example. However, in our
applications, a complete choice-based sample is unavailable. Namely we do not have a sample of
non-frauds. Cosslet [3, 4] has constructed an estimator when this data is supplemented by a ran-
dom sample of data without dependent variable information, but it appears to be computationally
intensive.

Steinberg and Cardell [10] have constructed an estimator which requires only a sample of the
fraud population. We call this method the method. No labels are necessary for the rest of the
population. Such an estimator can be determined from standard logistic regression packages as
long as negative weights may be used in the loglikelihood function. In [2] they prove consistency
of the estimator and derive the estimation of standard errors.

This paper compares the performance of estimators in terms of the misclassification rate, from
the three methods i.e. method, method and the simple logistic regression ( ) method.
Note that the method has full information on the response variable as it requires to know all
the labels, hence a superior classification rate for the method is to be expected.

2 Theoretical Background

Manski and Lerman [8] give a nice discussion of a powerful technique for the determination of con-
sistent estimators for choice-based samples. In short, it consists of writing a quasi-loglikelihood
function that asymptotically converges to a function whose optimal parameter value is the correct
value. One then applies Amemiya’s lemma [1] to prove that the sequence of optimal parameter
values converges to the correct value for almost all samples. One consequence of this technique is
that if the asymptotic limit of the quasi-loglikelihood is the asymptotic limit of a loglikelihood of
a consistent sample plan, the quasi-loglikelihood gives consistent estimates. That is our interpre-
tation of the estimator which we now describe.

Let the data be where is a real vector and or is binary and the parameter of the
regression is to be determined. If we take a random sample of size the normalized
conditional loglikelihood function is

Jennrich’s [7] law of large numbers states that the limit becomes

If we add to the second term and subtract the same from the
first term and use the fact that we obtain

(1)
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These integrals are with respect to and and can be approximated by a quasi-
loglikelihood evaluated on data which consists of a choice restricted sample (a random sample
from the population labeled ) and a supplementary sample (a random sample from the general
population without the or label). To be more precise, suppose we have observations,
where are sampled from and so have , and are sampled from and have no
label.

We can then write the quasi-loglikelihood

which is asymptotically the same as (1) but is instead evaluated on this complex sample. If we
decompose this sum as

we see that this is the likelihood function for a modified set of data consisting of a copy of the
data points with their labels along with another copy of those same data points with the
labels and all the unlabeled supplementary samples given the labels and with (not
necessarily positive) weights in front of each term.

3 Implementation of the Algorithm

In the data we consider, the parent population consists of random samples from
for some conditional distribution and some marginal . out of have

. From N we take samples without replacement and observe only their values. This
is referred to as the supplementary sample. Out of the of the that have the label ,
we sample without replacement. This is referred as the choice restricted sample.
and denote the sampling rates of the supplementary sample and the choice restricted
sample respectively. Our simulations (and those of [10]) suggest that the dependence between the
supplementary sample and the choice restricted sample has little effect.

Following Steinberg and Cardell [10] we summarize the data in the following way:

= Size of the population randomly drawn from the infinite population.
= Size of the supplementary sample.

= Size of the subpopulation with = 1.
= Size of the choice restricted sample

= sampling rate for the supplementary sample.
= sampling rate for the choice restricted sample.

We need a model for the probabilities in the quasi-likelihood function. We choose a logistic
function
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where .
Since, , we can insert this into our quasi-loglikelihood and rescale to obtain the

estimating equation of Steinberg and Cardell:

However, note that this is the only place where this formulation requires and . Conse-
quently, if instead we have available, the samples are not required: one simply has to come
up with the supplementary samples from and the choice based samples from .

This quasi-loglikelihood can be regarded as taking each supplementary sample and giving it the
label and weight , and one copy of each choice restricted sample, giving it the label
and weight and another copy of each choice restricted sample and giving it the label and
weight . This pseudo-data can then be input directly into a standard logistic regression package
as long as it accepts negative weights.2 Table 0 puts the pseudo data succinctly.

Table 0

Data Layout for Empirical Estimation

Weight Pseudo Actual Covariates Sample

1 0 Unknown x Supplementary

1 1 x Choice-restricted

- 0 1 x Choice-restricted

It is important to point out that the share of the subpopulation with , i.e. , needs to be
known in order to estimate the parameters.3 The sample estimate of the covariance matrix of the
estimated parameters can be obtained by using only the observations from the supplementary
sample. Let X be the matrix of the covariates, where is a -dimensional vector,
and V be the diagonal matrix with diagonal elements , where
is the estimated logistic probability for the observation in the sample based upon the model

2We use “SPLUS” software to find the estimates of the parameters. The covariance matrix had to be separately
coded. See [11] for details on SPLUS.

3The simulation results show that the Steinberg and Cardell [10] technique is robust to different values of .
Even an estimate of which is 30 off its actual value causes the misclassification error(to be explained in the next
section) to go up by less than 2 .
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estimated from the data set containing the observations. Let T be the diagonal
matrix with elements where . Cardell
and Steinberg [2] show that

is an estimator of the covariance matrix. From this matrix we calculate the asymptotically correct
standard errors of the parameter estimates.

4 Simulation Results and Examples

We look at several examples to do the comparison between the three methods i.e. the , and
method. To observe the impact of different marginal distributions on the performance of

the three methods, we take from a symmetric distribution i.e. a standard normal; a skewed
distribution i.e. a distribution with 5 degrees of freedom and finally a uniform distribution.

For each we fix the parameter of the logistic function so that the conditional
distribution

is determined. The marginal is sampled from times. After each sample is obtained, its coor-
dinate is inserted into and a Bernoulli sample is taken with that probability to determine
either or . All samples then have labels. In our experience, it is common to have
and so , but the sampling rate for choice restricted sample can be small. We investigate with
different for different . The choice restricted sample is made by first counting the number

of the which have . From these, we sample randomly without replacement.

4.1 Bench Mark Techniques

We use two bench mark methods to evaluate the Steinberg and Cardell algorithm (the method).
The method is simple Logistic Regression with complete information on the dependent vari-
able using the full parent dataset. The method is the Logistic Regression with no information
on the dependent variable except for the choice restricted sample. The dependent variable in the

method is assigned a value of 0 for all supplementary samples and the choice restricted sample
retains the value .4 To compare the methods we compute misclassification rates where we
determine the classifier if for the estimated value of i.e. , and
otherwise.

Note that the method uses a value of for all supplementary samples. If is
high, the method should lead to higher misclassification rates. Our empirical results, which are
described in the next section, show how the three methods compare as (which is a function
of the coefficients and ) and change. Given that the method assigns to all the
supplementary samples, and the method pools the supplementary and choice restricted sample
data in such a way that the log likelihood function can be estimated in a consistent way, it is not

4This ensures that Steinberg Cardell algorithm and the method both have identical information available.
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surprising that the method does not perform as well. In the next section we quantify how much
an improvement the method provides over the method.

4.2 Examples

We consider a wide variety of examples and for all of them we choose . In example
1, comes from a distribution with 5 degrees of freedom. of 0.20 implies that the
size of the subpopulation with is 2000. If is 0.30, the choice-based sample is 600. Table 1
shows three different scenarios for . We select three different combinations of
and which are kept the same across the three examples. In Table 1 “Class Error” refers to the
total misclassification error. NA means “not applicable”. Example 1a shows that the method
gives a misclassification error which is only better than the method. Of course, the
method performs the best because it has complete information on . Indeed, logistic regression
is known to be a consistent estimator of the s that generated the data. Consequently, we can
compute a relative improvement score

which measures how much an improvement is over the method with respect to the optimal
method. This score is when provides no improvement over the method and when it

is as good as logistic regression. In example 1a, and are chosen such that
is small. Here method shows only a slight improvement over the method in

terms of classification error but the relative improvement score is 0.43. In example 1b, and
are chosen such that . Now the classification error given by

the method is about lower than the method but the relative improvement decreases to
0.29. In example 3a, with high and lower , the misclassification error of the
method is almost lower than the method. Here the relative improvement score is only 0.22.
This implies that a large absolute improvement does not necessarily translate into a large relative
improvement score and vice versa.
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Table 1

Monte Carlo Simulation Results: Example 1

Example 1a: , ,
Method Class Error RI

NA 0.30 0.20 -4.02 0.20 20.23

1 0.30 0.20 -2.98 0.22 18.64 0.43

NA NA 0.20 -3.94 0.44 16.09
Example 1b: , ,

NA 0.20 0.40 -3.49 0.17 39.39

1 0.20 0.40 -2.14 0.20 33.76 0.29

NA NA 0.40 -3.91 0.68 19.77
Example 1c: , ,

NA 0.10 0.60 -3.41 0.12 60.95

1 0.10 0.60 -1.28 0.14 51.07 0.22

NA NA 0.60 -4.02 1.01 17.11
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Figure 1: Misclassification Error for the Three Methods in Example 1
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Figure 1 shows the performance of the three methods in terms of misclassification error as is
kept constant at -4 and is varied to obtain different values of .
The misclassification error rate of the method improves over the method as in-
creases.

Table 2 illustrates example 2 with and three different values of and .
In the first case, example 2a, and are -3 and 4 respectively which result in = 0.20.
The classification error given by the method is about better than the method. The RI
score is significant at 0.37. In example 2b where increases to 0.40, the method’s
classification error is 10 superior than the method and has a relative improvement score of

. In example 2c, where = 0.60, the method performs more than 15 better
than the method. In both Example 1 and 2 we have observed that as increases, the
method shows more absolute improvement over the method but the relative improvement goes
down.

Table 2

Monte Carlo Simulation Results: Example 2

Example 2a: , ,
Method Class Error RI

NA 0.30 0.20 -3.88 1.53 18.86

1 0.30 0.20 -2.92 1.73 14.91 0.37

NA NA 0.20 -3.89 4.1 8.38
Example 2b: , ,

NA 0.20 0.40 -2.84 0.95 41.95

1 0.20 0.40 -1.40 1.10 31.78 0.35

NA NA 0.40 -1.04 3.99 12.82
Example 2c: , ,

NA 0.10 0.60 -2.91 0.57 61.56

1 0.10 0.60 -0.70 0.69 46.25 0.31

NA NA 0.60 1.26 4.09 12.51

Figure 2 shows the misclassification errors generated by the three methods in example 2 when
is kept constant at 4 and is varied to get different values of . The results are

qualitatively the same as example 1, however, Figure 1 demonstrates that the method performs
only marginally better than the method at low levels of whereas in Figure 2, even at
low levels of , the method shows substantial improvement over the method. At
higher levels of , Figure 2 shows method has better performance than the method
compared to Figure 1.
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Figure 2: Misclassification Error for the Three Methods in Example 2

In example 3, we again analyze three different cases with . In example 3a, the
values of and are kept at -4.4 and 5 respectively which result in . Table 3
shows the classification errors and parameter estimates obtained from the three methods. The value
of is kept at 0.30. The method now performs exactly the same as the method. Hence, the
relative improvement score is . Example 3b in Table 3 shows, at , the
classification error given by the method is about only 3 lower than the method though the
relative improvement score is 0.22. In example 3c, with , method has 10
lower classification error than the method with a relative improvement score of 0.28. Example 3
shows that as increases, the absolute and relative improvement of method over the
method increases.

Figure 3 shows the misclassification errors for example 3 where is kept constant at 5 and
is varied in order to change . At low levels of , the and method have
very similar performance but as increases beyond 0.4, the method gives significantly
lower classification error than the method.
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Table 3

Monte Carlo Simulation Results: Example 3

Example 3a: , ,
Method Class Error RI

NA 0.30 0.20 -5.25 3.89 20.33

1 0.30 0.20 -4.11 3.89 20.33 0.00

NA NA 0.20 -4.45 5.12 18.27
Example 3b: , ,

NA 0.20 0.40 -4.04 2.62 39.10

1 0.20 0.40 -2.55 2.67 35.79 0.22

NA NA 0.40 -3.09 4.99 24.08
Example 3c: , ,

NA 0.10 0.60 -3.62 1.54 59.43

1 0.10 0.60 -1.41 1.59 49.43 0.28

NA NA 0.60 -1.84 4.97 23.61
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Figure 3: Misclassification Error for the Three Methods in Example 3
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5 Conclusions

In this study, we compare the performance of the three methods i.e. , and method using
classification errors. and methods work with incomplete information on the response vari-
able whereas the method has full information on the response variable. We look at examples
where the covariate comes from a distribution, a standard normal distribution and a uniform
distribution. Different parameters which potentially affect the performance of the methods are var-
ied to observe their impact on the performance. We conclude that the method performs at least
as good as the method in all scenarios. The method shows substantial improvement over the

method when and is high.
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